
EECE 500 – Approved Experience

Final Report

Author: Hadi Rayan Al-Sandid

Supervisor: Dr. Mazen Saghir

Internship Location: American University of Beirut

Training Term: Summer 2020

Report Date: September 8th, 2020

Table of Contents

Contents
Table of Contents ... 2

Table of Figures .. 3

Introduction .. 4

Training Overview .. 5

Project Overview ... 5

Smart Irrigation Controller .. 5

Selecting base hardware ... 6

Software & Code ... 6

Alternative Power System ... 7

Custom PCB ... 9

Back-End Server .. 12

Web Interface & Mobile Application .. 13

Documentation ... 15

Global, Economic, Environmental, and Societal Impact of Completed Work .. 17

Conclusion .. 18

References .. 20

Appendices ... 21

Appendix A: Background Information on the Project ... 21

Appendix B: Raspberry-Pi Power Requirements Overview .. 22

Appendix C: Raspberry-Pi 3 Model B Overview .. 23

Appendix D: Python3 ‘Requests’ Library Overview .. 24

Appendix E: Python3 ‘RPI.GPIO’ Library Overview ... 25

Appendix F: Back-End API Calls ... 27

Appendix G: Raspberry-Pi – Power Consumption Benchmarks .. 37

Table of Figures

Figure 1 : Diagram of the Smart Irrigation System ... 4

Figure 2- Diagram of the Smart Irrigation Controller ... 6

Figure 3- Diagram of the Portable Power System .. 8

Figure 4 - MTXDOT-EU1-A00-1 (Left) and NL-SW-GPRS (Right) ... 10

Figure 5- Schematic of our add-on PCB .. 11

Figure 6- 3D Visualization of our add-on PCB ... 12

Figure 7- Web Interface, 'Analytics' page ... 14

Figure 8- Mobile Application ... 15

Figure 9 - Documentation Website ... 16

Figure 10 - Micro-USB port of the Raspberry-Pi ... 22

Figure 11- GPIO Pins used to Power the Raspberry-Pi ... 22

Figure 12- Raspberry-Pi 3 Model B ... 23

Figure 13- Power requirements for different Raspberry-Pi models ... 38

Introduction

During my internship, I have worked under the supervision of Dr. Mazen Saghir on a

Smart Irrigation System. Its main objective is to ‘enhance’ the irrigation process on

agricultural fields, which is carried out by scheduling optimal irrigation cycles to reduce

water wastage and maximize crop yield. There are three main components in this

system: (1) A Smart Irrigation Controller, (2) a Back-End Server, (3) and a Web

Interface & Mobile Application. My work mainly consisted of R&D on all these

components, with a pronounced focus on the Smart Irrigation Controller.

Figure 1 : Diagram of the Smart Irrigation System

Training Overview

Project Overview

My internship took place between the 8th June and 8th August (i.e. around 8 weeks). For

the duration of my internship, I held weekly meeting with my supervisor Dr. Mazen

Saghir. These weekly meetings were scheduled on Wednesdays at 11 AM, and have

been used to discuss recent progress, review documentation, and talk about the next

steps we should take in the development of the Smart Irrigation System.

As mentioned in the introduction, I have worked on the three main components of the

system (i.e. Smart Irrigation Controller, Back-End Server, and Web Interface & Mobile

Application). We will discuss all these mentioned components shortly.

Smart Irrigation Controller

The term “Smart Irrigation Controller” represents the combination of (1) a Raspberry-Pi

board, (2) all software and code used to run the logic of the controller and its

components, (3) a self-sufficient and portable power solution to power the Raspberry-Pi,

(4) and an addon PCB for the Raspberry-Pi.

Figure 2- Diagram of the Smart Irrigation Controller

Selecting base hardware

When selecting the hardware to base our Smart Irrigation Controller on, we wanted a

solution which would allow us to run and debug scripts easily, have Wi-Fi connectivity

out-of-the-box, offer a large GPIO interface (i.e. more than 20 controllable pins), and be

relatively inexpensive (i.e. less than 100 USD). The Raspberry-Pi fit all the criteria with

its hardware specifications, so we have decided to use it as the base of our Smart

Irrigation Controller. The model we have selected specifically is the Raspberry-Pi 3

Model B, on which more details are available in APPENDIX C.

Software & Code

Our Raspberry-Pi model supports most mainstream Linux distributions, which has

allowed us to use tools available on these distributions to develop the scripts and logic

associated with our Smart Irrigation Controller in a more straightforward manner. We

have decided to go with Raspbian Lite, also called Raspberry-Pi OS, as it is the most

optimized Linux distribution for the Pi, and it only contains necessary daemons. During

testing, we had no issues running scripts in C, C++, and Python using native support

and some additional packages. More specifically, we’ve used the Python3 Library

‘RPI.GPIO’ to write scripts controlling the GPIO interface of the Raspberry-Pi, which is

required whenever we’d like the Pi to communicate with external modules or interfaces

(see APPENDIX E for more an overview of the library). Also, we’ve used the Python3

Library ‘Py.Requests’ to send HTTP requests directly from the Raspberry-Pi to other

devices over the internet (see APPENDIX D for more an overview of the library). Other

software we used include the Apache web server program, to host the Web Interface

directly on the Raspberry-Pi, and Incron, which is a similar program to CRON but

instead of running commands based on time, it triggers commands based on

file/directory events. In the later stages of the Smart Irrigation System project, we plan

to distribute Smart Irrigation Controllers which come pre-packaged with an SD-card

containing the OS and all necessary programs, effectively allowing it to run anywhere

without any additional setup required from users. All the programs we’d like to package

are available under public license and can be used & re-distributed as long as their

respective license is included (Apache is available under the Apache License 2.0,

Incron and Raspbian are available under the GNU General Public License, version 2).

Alternative Power System

We plan on deploying the Smart Irrigation Controller directly on agricultural fields. In

some cases, this might leave some units far from any power source (i.e. electrical grid).

To power these units, we had to research possible portable and self-sufficient power

solutions. One of the power solution we considered is a solar-powered system, featuring

a compact solar panel, a battery, and additional circuitry to deliver the right amount of

voltage/current to the base of the Smart Irrigation Controller (i.e. the Raspberry-Pi

board). Before moving forward with the power system’s design, we had to assess the

expected power usage of the Raspberry-Pi model we were using. We could not run

proper benchmarks in the MSFEA labs due to COVID restrictions, so we had to use

benchmark runs from an online source (Source : PidRamble). The Raspberry-Pi model

we are using (i.e. Raspberry-Pi 3 Model B) consumes 1.4 Watts when idle

(5v@260mA), 1.2W at minimum CPU load (5v@230mA), and 3.7W at maximum CPU

load (5v@730mA). See APPENDIX B for more details on how the Raspberry-Pi models

can be powered (i.e. regular adapter, GPIO pins…) and APPENDIX G for more details

on the power consumption of different Raspberry-Pi models. While we have conducted

research on the solar-powered system, we did not have the opportunity to assemble it

and conduct tests due to limited lab access. As such, we have decided to not include

the solar-powered system in our first prototype of the Smart Irrigation System, and just

use a regular power adapter.

Figure 3- Diagram of the Portable Power System

https://www.pidramble.com/wiki/benchmarks/power-consumption

Custom PCB

We would like the Smart Irrigation Controller to have constant internet access to be able

to communicate with the Back-End Server without any downtime. However, as we have

mentioned in the previous section, our units will be deployed directly on agricultural

fields, and might be located far from any wireless infrastructure (i.e. more than 1KM).

Wireless modules which are built-in the Raspberry-Pi, like Wi-Fi or Bluetooth, are not

useful in this case due to their limited range, meaning we would have to look for

alternative ways to connect our Smart Irrigation Controller to the internet. LoRa and

GSM are two wireless technologies which we are considering using with our Smart

Irrigation Controller. LoRa is a is a LPWAN (i.e. Low Power Wide Area) technology

which can connect with other devices at a range of up-to 20KM, although it offers a very

limited bandwidth. On the other hand, GSM is a popular wireless technology used by

mobile operators to provide data services and internet connectivity. If we were to

implement a LoRa module, we need to (1) select a LoRa module operating in a

frequency band we can legally use in Lebanon (i.e. like ISM band 868MHz), (2) and

setup a LoRaWAN gateway operating at the same frequency as the LoRa module. If we

were to implement a GSM module, we require that (1) our GSM module supports the

frequency bands used by Lebanese mobile operators for 2G/EDGE (i.e. 900MHz to

1.2GHz range), and (2) a SIM card from a Lebanese mobile operator with a valid

subscription to connect to the closest GSM relay. A reference to the Lebanese National

Frequency allocation Table can be found here.

To implement LoRa and GSM support for the Raspberry-Pi, we designed an addon

PCB which supports these respective modules, and can be connected to the

http://www.tra.gov.lb/Library/Files/Uploaded%20files/LNFT_TRA_Final%20Version%20for%20publication_24062008.pdf

Raspberry-Pi through its GPIO interface. Having both LoRa and GSM modules

available simultaneously on the PCB would be redundant, as we only require one of

these modules to ensure internet connectivity. As such, we plan on allowing the users to

select which module they would prefer to use by toggling a dipswitch connected to the

LoRa and GSM modules slots. Selecting either module with the dipswitch will modify

which scripts will be executed on the Raspberry-Pi, effectively providing seamless

support for communication when using either LoRa or GSM. Currently, our addon PCB

supports the MTXDOT-EU1-A00-1 LoRa module and the NL-SW-GPRS GSM module,

which both communicate with the Raspberry-Pi through an UART serial interface. On a

side-note, we have added additional pin headers on our addon PCB, to act as a bridge

with the unused pins on the Raspberry-Pi’s GPIO interface. This design choice has

been made to ensure we would have an uncluttered interface in later stages of the

project when we would work on connecting our Smart Irrigation Controller to physical

irrigation systems.

Figure 4 - MTXDOT-EU1-A00-1 (Left) and NL-SW-GPRS (Right)

Our add-on board was supposed to follow the official design guidelines from the

Raspberry-Pi foundation for “HATs” (The term HAT stands for ‘Hardware on Top” and is

used to describe addon board connecting to the GPIO interface of the Raspberry-Pi) but

considering that we are still in a prototyping stage, we decided to go with a design with

does not completely abide to these guidelines (i.e. No ID EEPROM and dimensions

which differ from the recommended design). The official design guidelines for HATs can

be found here, and the recommended mechanical drawing is available here.

To design our addon PCB, we have used the electronic design automation software

KiCad, which is open-source and containes all required tools to work on our design.

These steps include (1) developing custom symbols and footprint for parts not available

in stock libraries, (2) creating a schematic file containing the desired end circuit, (3)

setting the dimensions for our PCB and placing & connecting our components, with a

two-layer design in mind, (4) generating our BOM (i.e. Bill-of-Material) and a 3D model

of our PCB to visualize the end result.

Figure 5- Schematic of our add-on PCB

https://github.com/raspberrypi/hats/blob/master/designguide.md
https://github.com/raspberrypi/hats/blob/master/hat-board-mechanical.pdf

Figure 6- 3D Visualization of our add-on PCB

Back-End Server

The Back-End Server in the Smart Irrigation System was developed by Roaa Al-Feel, a

graduate student assisting Dr. Saghir for the Smart Irrigation System project. It is based

on Python, runs on the micro-web framework Flask, and stores user/field data as JSON

files in a NOSQL database. RESTful API Calls for the back-end system are available in

APPENDIX F.

The purposes of the Back-End Server include : (1) Computing efficient irrigation

routines for agricultural fields in a set region, based on satellite data, evapotranspiration

values, and other geographical & weather parameters; (2) Sending targeted information

about optimal irrigation routines to Smart Irrigation Controllers, or to user interfaces

connected with the system (i.e. Web Interface & Mobile Application); (3) Receiving

information around completed irrigation routines, either automatically from deployed

Smart Irrigation Controllers, or manually from users logged on either the Web Interface

or Mobile Application.

Currently, the Back-End Server is hosted on the Google Cloud platform with limited

scalability, which is enough for us to run tests, and ensure our Back-End Server

coordinates properly with other components of the system. In the final stages of the

Smart Irrigation System, we plan to remove scalability constraints on the Back-End

Server, which will allow us to serve a larger userbase once access to the system is

made public. Data from both users and their fields is also collected for analytics

purposes. This data is used to study the preferences of our user-base and decide if we

should later change some aspects of our system (i.e. UI, prediction systems…).

Web Interface & Mobile Application

To allow our users to interact with the Smart Irrigation System, and receive data

relevant to their fields, we had to make sure that our user portal would be easy-to-use

and accessible from everywhere, on almost any device. Therefore, we decided to

develop both a Web Interface and Mobile Application component for the Smart Irrigation

System.

The purpose of the Web Interface is to allow users to re-configure or set preferences for

their Smart Irrigation Controller, while also being able to check the irrigation history on

any fields they have registered. The Web Interface UI has been designed using the

Bootstrap front-end framework, and all logic and user interactions are handled through

JavaScript. Whenever the user requests or sends any data, additional JavaScript code

is executed as to handle proper communication between the device running the Web

Interface and the device being contacted (i.e. Smart Irrigation Controller or Back-End

Server). Initially, we planned on hosting our Web Interface directly on our Smart

Irrigation Controller using the Linux web server Apache, which would allow users to

access it by just having the device they’re browsing from be in the same Wi-Fi network

as the Smart Irrigation Controller. However, we recognized it would cause issues in the

long-term, as hosting the Web Interface on the Smart Irrigation Controller would mean it

would have to operate without downtime to service possible requests from users,

consuming more electricity and making it near-impossible to power the Smart Irrigation

Source without connecting it to a power grid. An alternative we are considering is to set

the Web Interface in our Back-End Server. This approach would allow users to access

the Web Interface with near-zero downtime, and have easier access to their data, as it

is already available in the Back-End Server’s database. One downside to this approach

might be that configuring Smart Irrigation Controller might require more steps, as the

user now sends his requests to the Back-End Server, which must now forward it to the

targeted Smart Irrigation Controller.

Figure 7- Web Interface, 'Analytics' page

The Mobile Application has a similar purpose to the Web Interface. Currently, only an

Android version is available, but we plan to extend support to IOS devices soon. The

Mobile Application has been designed to have an easy-to-use interface, multi-language

support (Arabic/English are currently supported), and compatibility with devices running

Android versions as old as Android 4.0 Jellybean.

Figure 8- Mobile Application

Documentation

To ensure the readability and re-usability of our code and hardware designs, we had to

provide in-depth documentation. This is especially important considering that we would

like to make our project open-source, and easily modifiable by any individual or third-

party.

We decided to make our documentation publicly available online on a separate website.

To have a functional website, we have used the static site generator Jekyll, which runs

on Ruby and generates a website from the markdown files we wrote for documentation.

We have also used the ‘github-pages’ functionality on Github to build and host our

documentation website at no cost. The URL to our webpage is

https://hsandid.github.io/SmartIrrigationSystem/.

Figure 9 - Documentation Website

https://hsandid.github.io/SmartIrrigationSystem/

Global, Economic, Environmental, and Societal Impact of

Completed Work

As mentioned previously, the Smart Irrigation System’s objective is to ‘enhance’ the

irrigation process on agricultural fields, as to reduce water wastage and maximize crop

yield. In the scope of a country like Lebanon, this project might help address economic,

environmental, and societal issues. If we consider the economical aspect, a

considerable amount of companies and individuals have started a shift towards

agriculture-based ventures. Using the Smart Irrigation System might allow them to

maximize their crop yield and ensure better returns on their businesses. If we consider

the environmental aspect, the Smart Irrigation System delivers highly optimized

irrigation routines, which aim for a near 0% of water wastage. This is particularly

important considering how scarce water resources can be in certain regions of

Lebanon. If we consider the societal aspect, the Smart Irrigation System can help

alleviate some of the issues brought by the current Lebanese economic crisis. Lower-

class families are losing most of their purchasing power and might soon not be able to

buy food due to the rising prices of imports. The solution would be to increase local

production to try and match the demand, but these efforts are hindered by the lack of an

efficient irrigation solution in most agricultural fields. This is where we can deploy the

Smart Irrigation System, to help optimize irrigation routines in these fields. Its use will

lead to a higher crop yield, which will in turn increase local production of

plants/fruits/vegetables. It is also in our plans to release the Smart Irrigation System as

an open-source project, available for use and modification to all. This way, we can hope

custom iterations of our system are developed and fine-tuned to support additional

components & address issues in other specific areas of the world.

Conclusion

I have greatly benefited from this training experience. It has allowed me to develop

technical skills, thanks to both extensive research and advice from my supervisor Dr.

Saghir.

Technical skills : (1) Multidisciplinary R&D, focusing mainly on hardware and software

development, (2) Write scripts in Python to control the Raspberry-Pi’s interfaces, and

different aspects of a Linux System, (3) Working from scratch on a complete PCB

design, using the open-source tool Ki CAD, (4) Using front-end frameworks like

Bootstrap, and static site generators like Jekyll, to design user-interfaces and

documentation, (5) Learning more about Embedded Systems, mainly by experimenting

with the Raspberry-Pi, (6) Learning more about RF & EM considerations in PCB design,

(7) Learning more about alternative wireless solutions for data services, like LoRa and

GSM.

Due to the limited background I have in some topics, I had to ask for advice from Dr.

Saghir and other professors in MSFEA (on Dr. Saghir’s behalf) when working on some

tasks. One example would be the issues I encountered while modifying our add-on PCB

to take into consideration RF design constraints. This lead to issues when researching

RF & EM interference, as I only knew the basics on this topic from my Engineering

Electromagnetics course (EECE-380). Dr. Joseph Costantine, whose field of interest is

RF & EM, agreed to answer some of my questions on the topic, which allowed me to

complete the task successfully. He also recommended taking a course on Radio

Frequency (RF) Circuits Design (EECE-685) if I wanted to learn more about the topic, or

if I intended to work on RF circuits in future projects.

I have no improvement suggestion for the training program. Throughout the course of

the internship, I was well guided by Dr. Mazen and all tasks were set with clear goals.

References

• Official Request Library documentation

• Official RPI.GPIO Documentation

• Altium - PCB Design Recommendations

• Electronics-Notes - PCB Design Recommendations

• Quick-PCBA - PCB Design Tips

• Ken’s Tech Tips - Cellular Networks Technologies

• LoRa-Alliance Official Documentation

• The Things Network - Commercially Available LoRaWAN Gateways

• Raspberry-Pi 3 Model B, Official Page

• Raspberry-Pi Zero, Official Page

• Raspberry-Pi, Github - Pi-HATs documentation

• PiHut - How do I power my Raspberry Pi?

• HowToForge - What is Incron ?

• SSWM - Drip Irrigation

• SSWM - Sprinkler system

• SSWM - Surface Irrigation

• Github Repository for the Smart Irrigation System

https://requests.readthedocs.io/en/latest/user/quickstart/#make-a-request
https://sourceforge.net/p/raspberry-gpio-python/wiki
https://resources.altium.com/p/top-5-pcb-design-guidelines-every-pcb-designer-needs-know
https://www.electronics-notes.com/articles/analogue_circuits/pcb-design/pcb-design-layout-guidelines.php
https://www.quick-pcba.com/pcb-news/why-not-odd-number-multilayer-printed-circuit-board.html
https://kenstechtips.com/index.php/download-speeds-2g-3g-and-4g-actual-meaning
https://lora-alliance.org/sites/default/files/2018-04/what-is-lorawan.pdf
https://www.thethingsnetwork.org/docs/gateways/start/list.html
https://www.raspberrypi.org/products/raspberry-pi-3-model-b-plus/
https://www.raspberrypi.org/products/raspberry-pi-zero/
https://github.com/raspberrypi/hats
https://thepihut.com/blogs/raspberry-pi-tutorials/how-do-i-power-my-raspberry-pi
https://www.howtoforge.com/tutorial/trigger-commands-on-file-or-directory-changes-with-incron/
https://sswm.info/sswm-solutions-bop-markets/affordable-wash-services-and-products/affordable-technologies-and/drip-irrigation
https://sswm.info/sswm-university-course/module-4-sustainable-water-supply/further-resources-water-use/sprinkler-irrigation
https://sswm.info/sswm-university-course/module-4-sustainable-water-supply/further-resources-water-use/surface-irrigation
https://github.com/hsandid/SmartIrrigationSystem

Appendices

Appendix A: Background Information on the Project

This Smart Irrigation System was originally submitted by a team of professors at AUB

for the Google AI Impact Challenge 2019, whose objective was to propose projects

making use of AI to address societal issues. The Smart Irrigation System was among

the projects selected by Google, effectively securing guidance in further steps of project

development.

The team of AUB professors is composed of Dr. Hadi Jaafar, which lead the project and

was responsible of the smart irrigation component; Dr. Fatima Abu Salem, which was

responsible of the machine-learning and AI components; Dr. Mazen Saghir, which lead

the IoT and embedded systems components; and Dr. Samer Kharroubi, which lead the

analysis and statistical modeling components.

More information about the project can be found here :

https://www.aub.edu.lb/msfea/news/Pages/googleai-impactchallenge.aspx

My involvement in the project started in August 2019, where I have assisted Dr. Mazen

with the development of an Android mobile application, which would be part of the

Smart Irrigation System. Throughout both the Fall and Spring semesters, I have

continued my work and assisted with the development of other components in the

system, both through the work study program and by taking EECE-499 with the Smart

Irrigation System as my research subject. This current summer internship, which fulfills

the requirements of EECE-500, is a continuation of my work on the project.

https://www.aub.edu.lb/msfea/news/Pages/googleai-impactchallenge.aspx

Appendix B: Raspberry-Pi Power Requirements Overview

The Raspberry-Pi can be powered in two ways :

(1) Through its Micro-USB port, with a recommended input voltage of 5V input

current of 2A

Figure 10 - Micro-USB port of the Raspberry-Pi

(2) Through it's GPIO interface by plugging a 5V source to Pin #2 on the GPIO

header, and the ground of this 5V source to Pin #6 on the GPIO header.

Figure 11- GPIO Pins used to Power the Raspberry-Pi

Warning : The recommended method of powering the Raspberry-Pi is through its Micro-

USB port, as it offers regulation and fuse protection to protect from over-voltage and

current spikes. There is no regulation and fuse protection on the GPIO Interface

meaning that any over-voltage, current spikes, or reverse polarization might fry the

GPIO interface, or worse, the Pi itself.

Source: PiHut - How do I power my Raspberry Pi?

Appendix C: Raspberry-Pi 3 Model B Overview

Figure 12- Raspberry-Pi 3 Model B

Processor: Broadcom BCM2837B0, Cortex-A53 (ARMv8) 64-bit SoC @ 1.4GHz
(Quad-core processor).

Networking: Dual-band wireless LAN / 2.4GHz and 5GHz IEEE 802.11.b/g/n/ac
Wireless LAN; Bluetooth 4.2/BLE (Bluetooth Low-Energy); Ethernet port; Power-over-
Ethernet support (Requires separate module)

RAM: 1GB LPDDR2 SDRAM

GPIO Interface:

• Extended 40-pin GPIO header; GPIO I/O pins can set/read at high (3.3V) or low
(0V); Internal pull-up or pull-down resistors are present on each pins. Pins

https://thepihut.com/blogs/raspberry-pi-tutorials/how-do-i-power-my-raspberry-pi

GPIO2-GPIO3 have fixed pull-up resistors, but other pins can be configured in
software.

• Raspberry-Pi supports Pulse-Width modulation, with Software Pulse-Width
Modulation is available on all GPIO pins, and Hardware Pulse-Width Modulation
available on pins GPIO12, GPIO13, GPIO18, GPIO19.

• Raspberry-Pi supports UART with the following configuration: RX(GPIO15), TX
(GPIO16),

• Raspberry-Pi supports SPI with the following configuration: SPI0: MOSI
(GPIO10); MISO (GPIO9); SCLK (GPIO11); CE0 (GPIO8), CE1 (GPIO7); SPI1:
MOSI (GPIO20); MISO (GPIO19); SCLK (GPIO21); CE0 (GPIO18); CE1
(GPIO17); CE2 (GPIO16).

• Raspberry-Pi supports I2C with the following configuration : EEPROM Data:
(GPIO0); EEPROM Clock (GPIO1); Data: (GPIO2); Clock (GPIO3).

Other Interfaces: 4x USB 2.0 ports; CSI camera port for connecting a Raspberry Pi
camera; DSI display port for connecting a Raspberry Pi touchscreen display; 4-pole
stereo output and composite video port; Micro SD port for loading your operating
system and storing data; 1x Full-size HDMI port

Required Power: Typical PSU current capacity is 2.5A; Typical bare-board active
current consumption is 400ma; Maximum total USB peripheral current draw is 1.2A;
Recommended micro-USB connector: 5 V/2.5 A DC

Miscellaneous Information: Raspberry-Pi 3 Model B will remain in production until
January 2026; Global compliance and safety certificates here; Operating temperature :
0-50°C; Raspberry-Pi 3 Model B mechanical drawing available here; Raspberry-Pi 3
Model B schematic diagrams available here

Source: Raspberry-Pi 3 Model B, Official Page

Appendix D: Python3 ‘Requests’ Library Overview
Basic requests

• Importing the 'requests' library

import requests

• GET request

requests.get(<URI>)

• POST request

requests.post(<URI>,<DATA>)

https://www.raspberrypi.org/documentation/hardware/raspberrypi/conformity.md
https://github.com/raspberrypi/documentation/raw/master/hardware/raspberrypi/mechanical/rpi_MECH_3bplus.pdf
https://www.raspberrypi.org/documentation/hardware/raspberrypi/schematics/rpi_SCH_3bplus_1p0_reduced.pdf
https://www.raspberrypi.org/products/raspberry-pi-3-model-b-plus/

• PUT request

requests.put(<URI>,<DATA>)

• DELETE request

requests.delete(<URI>)

Adding custom parameters

• GET request with custom parameters

payload = {'key1': 'value1', 'key2': 'value2'}

r = requests.get(<URI>, params=payload)

Adding custom headers

• GET request with custom headers

url = 'https://api.github.com/some/endpoint'

customHeaders = {'user-agent': 'my-app/0.0.1'}

r = requests.get(<URI>, headers = customHeaders)

Read received data

• GET request with a JSON response

r = requests.get('https://api.github.com/events')

jsonResponse = r.json()

print(jsonResponse[<JSONFIELD>])

Source:

• Official Request Library documentation

Appendix E: Python3 ‘RPI.GPIO’ Library Overview

Initialization:

https://requests.readthedocs.io/en/latest/user/quickstart/#make-a-request

• Importing the 'RPI.GPIO' library

import RPi.GPIO

• Select a pin numbering system

#BOARD numbering system

GPIO.setmode(GPIO.BOARD)

#BCM numbering system

GPIO.setmode(GPIO.BCM)

Configure channel as an input:

#With Pull-up resistor

GPIO.setup(channel, GPIO.IN, pull_up_down=GPIO.PUD_UP)

#With Pull-down resistor

GPIO.setup(channel, GPIO.IN, pull_up_down=GPIO.PUD_DOWN)

• Configure channel as an output:

GPIO.setup(channel, GPIO.OUT)

I/O configuration:

• Poll GPIO pins

if GPIO.input(channel):

 print('Input was HIGH')

else:

 print('Input was LOW')

• Input detection using WaitForEdge() function

GPIO.wait_for_edge(channel, GPIO.RISING)

• Set GPIO pin as high/low

#Set output as high

GPIO.output(<CHANNEL>, GPIO.HIGH)

#Set output as low

GPIO.output(<CHANNEL>, GPIO.LOW)

Clean-up:

• To clean-up any used resources, you can call the following :

GPIO.cleanup()

Source:

• Official RPI.GPIO Documentation

Appendix F: Back-End API Calls

Disclaimer: Our back-end is still under testing. As such, an URI will not be made
publicly available.

Summary of API Calls :

• POST /signup
• POST /login
• POST /fields
• GET /fields
• GET /fields/<id>
• PUT /fields/<id>
• GET /irrigation
• GET /irrigation/<irrigation_id>
• PUT /irrigation/<irrigation_id>
• GET /tiff/last_updated
• POST /app_logs/device
• POST /app_logs/app_lang
• POST /app_logs/device_lang
• POST /app_logs/region
• POST /app_logs/exit_screen
• POST /app_logs/ui_errors
• POST /app_logs/server_errors
• POST /app_logs/lang_change
• POST /app_logs/ui_response

POST /signup ;

• Description:

Call allowing new users to sign-up and receive an authentication token/user-id.

https://sourceforge.net/p/raspberry-gpio-python/wiki

• Request body (in JSON format) :

{

 mobile_number: "+961<phoneNumber>",

 town_id: "<townID>"

}

• Response body (in JSON format) :

{

 user_id: "<userID>",

 auth_token: "<auth_token>"

}

POST /login :

• Description:

Allows users to log-in based on a verification code. Currently not included in features.

• Request body (in JSON format) :

{

 mobile_number: "<mobileNumber>",

 verification_code: "<verificationCode>"

}

• Response body (in JSON format) :

{

 user_id: "<userID>",

 auth_token: "<authToken>"

}

POST /fields :

• Description:

Call for users to create a new field

• Required Header : auth_token

• Request body (in JSON format) :

{

 name: "<fieldName>",

 area: "<areaID>",

 latitude: <number>,

 longitude: <number>,

 irrigation_system_id: "<irrigationSystemID",

 crop_type_id: "<cropTypeID>",

 town_id: "<townID>"

}

• Response body (in JSON format) :

{

 field_id: "<fieldID>"

}

GET /fields :

• Description:

 Returns all fields registered by a specific user

• Required Header : auth_token

• Response body (in JSON format) :

{
 fields:

 [

 {

 name: "<fieldID>",

 area: <number>,

 latitude: <number>,

 longitude: <number>,

 crop_type_id: "<cropTypeID>",

 Irrigation_system_id: "<irrigationSystemID>",

 town_id: "<townID>",

 user_id: "<userID>",

 created_at: <timestamp>,

 updated_at: <timestamp>

 }

]

}

GET /fields/<id>:

• Description:

Returns a specific field which belong to the current user

• Required Header: auth_token

• Response body (in JSON format) :

{

 name: "<fieldID>",

 area: <number>,

 latitude: <number>,

 longitude: <number>,

 crop_type_id: "<cropTypeID>",

 Irrigation_system_id: "<irrigationSystemID>",

 town_id: "<townID>",

 user_id: "<userID>",

 created_at: <timestamp>,

 updated_at: <timestamp>

}

PUT /fields/<id> :

• Description:

Updates a field created by the current user

• Required Header : auth_token

• Request body (in JSON format) :

{

 name: "<fieldID>",

 area: <number>,

 latitude: <number>,

 longitude: <number>,

 crop_type_id: "<cropTypeID>",

 Irrigation_system_id: "<irrigationSystemID>",

 town_id: "<townID>",

 user_id: "<userID>",

 created_at: <timestamp>,

 updated_at: <timestamp>

}

GET /irrigation:

• Description:

Returns the irrigation schedule/history for a field

• Request body (in JSON format) :

{
 field_id: "<fieldID>",

 scheduled: <boolean>

}

• Response body (in JSON format) :

{

 field_id: "<fieldID>",

 watered: <boolean>,

 duration_needed: <number>,

 actual_duration: <number>,

 water_needed: <number>,

 actual_water_used: <number>,

 scheduler_irrigation_time: <timestamp>,

 actual_irrigation_time: <number>,

 current_fuel_price: <number>,

 actual_fuel_cost: <int>,

 emissions: <int>,

 created_at: <timestamp>,

 updated_at: <timestamp>

}

GET /irrigation/<irrigation_id> :

• Description:

Returns the irrigation schedule/history for a field

• Response body (in JSON format) :

{

 field_id: "<fieldID>",

 watered: <boolean>,

 duration_needed: <number>,

 actual_duration: <number>,

 water_needed: <number>,

 actual_water_used: <number>,

 scheduler_irrigation_time: <timestamp>,

 actual_irrigation_time: <number>,

 current_fuel_price: <number>,

 actual_fuel_cost: <number>,

 emissions: <number>,

 created_at: <timestamp>,

 updated_at: <timestamp>

}

PUT /irrigation/<irrigation_id> :

• Description:

Call which allows the user to notify that he irrigated one of his fields

• Request body (in JSON format) :

{

 field_id: "<fieldID>",

 watered: <boolean>,

 actual_duration: <number>,

 actual_water_used: <number>,

 actual_irrigation_time: <number>,

 actual_fuel_cost: <number>,

 emissions: <number>,

 created_at: <timestamp>,

 updated_at: <timestamp>

}

GET /tiff/last_updated :

• Description:

Call to get the time at which the TIFF map was last updated

• Response body (in JSON format) :

 {

 last_updated: <Datestring>

 }

POST /app_logs/device :

• Description:

Get user device model. This will be stored for each user, overwritten at each request

• Required Header : auth_token

• Request body (in JSON format) :

{

 device_model: "<deviceModel>"

}

• Response:

status 204 [NO_CONTENT]

POST /app_logs/app_lang :

• Description:

Get language to which the application is currently set. This will be stored for each user,

overwritten at each request

• Required Header : auth_token

• Request body (in JSON format) :

{

 app_lang: "<appLanguage>"

}

• Response:

status 204 [NO_CONTENT]

POST /app_logs/device_lang :

• Description:

Get language to which the user device is currently set. This will be stored for each user,

overwritten at each request

• Required Header : auth_token

• Request body (in JSON format) :

{
 device_lang: "<deviceLanguage>"

}

• Response:

status 204 [NO_CONTENT]

POST /app_logs/region :

• Description:

Get the current region of the user. This will be stored for each user, overwritten at each

request

• Required Header : auth_token

• Request body (in JSON format) :

{

 region: "<regionName>"

}

• Response:

 status 204 [NO_CONTENT]

POST /app_logs/exit_screen :

• Description:

Get the screen from where the user exits the application the most frequently. This will

be stored for each user, overwritten at each request

• Required Header : auth_token

• Request body (in JSON format) :

{

 screen_name: "<screenName>"

}

• Response:

status 204 [NO_CONTENT]

POST /app_logs/ui_errors :

• Description:

Periodically check if any UI error occurred when using the application. This will be

stored on a system-level. Contents of this list will be added to the list of errors already

stored in database

• Required Header : auth_token

• Request body (in JSON format) :

{

 ui_errors:

 [

 {

 error_msg: "<errorMsg>",

 time: <timestamp>

 }

]

}

• Response:

status 204 [NO_CONTENT]

POST /app_logs/server_errors :

• Description:

Periodically check if any server error occurred when using the application. This will be

stored on a system-level. Contents of this list will be added to the list of errors already

stored in database

• Required Header : auth_token

• Request body (in JSON format) :

{

 server_errors:

 [

 {

 error_msg: "<errorMsg>",

 time: <timestamp>

 }

]

}

• Response:

status 204 [NO_CONTENT]

POST /app_logs/lang_change :

• Description:

Check if the user has changed the application language manually. This will be stored on

a user-level. It will be added to the stored total value, please reset to zero locally after

sending request

• Required Header : auth_token

• Request body (in JSON format) :

{

 lang_change: <number>

}

• Response:

status 204 [NO_CONTENT]

POST /app_logs/ui_response :

• Description:

Get the average UI response time for each user. This will be stored on a user-level. It

will be added to the stored total value and a counter of total numbers this response time

has been logged will be incremented. Therefore calculating average response time per

user.

• Required Header : auth_token

• Request body (in JSON format) :

{

 response_time: <number>

}

• Response:

status 204 [NO_CONTENT]

Appendix G: Raspberry-Pi – Power Consumption Benchmarks

We know that the Raspberry-Pi requires an input voltage of 5V. We will now see how

much current (and coincidentally power) some models of the Raspberry-Pi draw under

different load conditions. All the benchmarks will be taken from the PidRamble website.

The boards are running stock Raspbian Lite, with no additional software installed and

only running basic daemons. There are no additional peripherals connected to the Pi

boards.

Note: All Raspberry-Pi models consume around 0.1W when powered off, until they are

disconnected from their power source.

Raspberry-Pi Model Pi State Power Consumption

Raspberry-Pi 3 B+ Idle 350mA(1.9W)

Raspberry-Pi 3 B+ Maximum CPU Load 980 mA(5.1 W)

Raspberry-Pi 3 B+ Minimum CPU Load with
HDM & LED disabled

350 mA(1.7 W)

Raspberry-Pi 3 B Idle 260 mA(1.4 W)

Raspberry-Pi 3 B Maximum CPU Load 730 mA(3.7 W)

Raspberry-Pi 3 B Minimum CPU Load with
HDM & LED disabled

230 mA(1.2 W)

Raspberry-Pi 2 B Idle 220 mA(1.1 W)

Raspberry-Pi 2 B Maximum CPU Load 400 mA(2.1 W)

Raspberry-Pi 2 B Minimum CPU Load with
HDM & LED disabled

200 mA(1.0 W)

Figure 13- Power requirements for different Raspberry-Pi models

